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Abstract
The rise of online proctoring potentially provides more opportunities for item harvesting and consequent brain dumping 
and shared “study guides” based on stolen content. This has increased the need for rapid approaches for evaluating and 
acting on suspicious test responses in every delivery modality. Both hiring proxy test takers and studying unauthorized test 
content (e.g., “study guides” or brain dumps) result in characteristic patterns of responses, many of which are detectable 
through collusion analysis. The ability to identify and rapidly revoke test results are one component of stopping test takers 
from engaging in these behaviors, both in online proctored and test center testing. Existing collusion analyses have typically 
taken the approach of evaluating all response pairs sequentially, potentially requiring several days to evaluate a set of test 
results. This paper demonstrates matrix-based methods for quickly calculating exact overlap counts for large data sets, as 
well as approaches for determining criteria for flagging suspicious results or invalidating results. We discuss and compare 
the results for simulations and probability calculations and discuss the operational implications of these decisions.  

*Author for correspondence

1.  Introduction
Like the move from paper-based to computer-based tests 
in the 1990s and 2000s, the use of online proctoring with 
licensure and certification programs raises questions 
about the comparability of results with test-center based 
results. In many discussions on this topic, the issue of test 
security is raised as a topic of particular concern. While 
proponents of online proctoring have pointed out that 
cheating does occur in test centers, access to the physical 
environment and computer hardware of the testing event 
provides new opportunities to cheat. Proxy test taking, as 
well as access to operational test questions through brain 
dumps or “study guides”, are two of these opportunities 
that may be detected using forensic analysis.
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Collusion analysis is the evaluation of excessive levels 
of response similarity to detect proxy test taking or shared 
responses. There are numerous methods for identifying 
answer copying and sharing, typically based on the 
overlap of incorrect responses, correct and incorrect 
responses, or all item responses (Zopluoglu, 2017).  This 
general approach was originally introduced in the 1920s 
to identify answer copying in physical test locations 
(Bird, 1927; 1929), but has gained prominence as a 
means of detecting virtual collaboration as well. Groups 
of test takers who have all studied the same item set 
are identified by these analyses. Becker and Makransky 
(2011) demonstrated that response similarity was also 
relevant to proxy test takers, with repeat test takers 
showing extremely high similarity between responses 
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over time. While an individual proxy testing for just one 
other person would be difficult to identify (e.g., having 
your twin brother take the test for you), a “professional” 
proxy test taker testing for numerous individuals would 
be easier to detect.

Evaluation of test results may be done for a targeted 
group (e.g., for an individual or test center), or for the 
overall testing population (Maynes, 2017), and the criteria 
for flagging test takers as well as the computational 
resources necessary will vary based on that decision. 
Evaluating the overall population for collusion requires 
the comparison of every test taker with every other test 

taker, resulting in 
N-1N 

2
∗  calculations. When the

calculations themselves are lengthy, the frequency with 
which these can be run may also be limited. Relying on 
traditional methods of collusion analysis would prevent 
the real-time (or near real-time) evaluation of test 
results, which has particular implications for the security 
of programs employing online proctoring. Frequent 
evaluation of test results for collusion, and the invalidation 
of results (or requirement to retest), would reduce current 
invalid test results, as well as reducing the likelihood of 
future cheating using these methods due to the known 
risk of getting caught. Motivated by this desire to perform 
frequent collusion analysis, the authors lay out in this 
paper an application of matrix multiplication which, in 
combination with pre-calculating flagging criteria, will 
dramatically speed up these analyses.

2.  Response Similarity
Response similarity indices “look at the likelihood of 
agreement between two response vectors given the 
assumption of independent responding” (Zopluoglu, 
2017). In practice this may involve counting correct 
responses in common, item scores in common, exact 
incorrect responses in common, or all responses in 
common. High scoring test takers will have many 
more correct responses in common with all test takers, 
and low scoring test takers will have more incorrect or 
exact incorrect responses in common with other low 
scoring test takers. For this reason, response similarity 
is insensitive to collusion between test takers with very 
high scores, and the measures of response similarity must 
condition on total scores.

The following counts are relevant to the calculation of 
response similarity indices:

•	 Correct overlap, the number of items two test 
takers have both answered correctly

•	 Incorrect overlap, the number of items two test 
takers have both answered incorrectly

•	 Exact incorrect overlap, the number of items 
for which two test takers have chosen the same 
incorrect response

•	 Items in common, the total number of items in 
common between two test takers

•	 The number of items that are correct for each test 
taker

There are numerous options for the interpretation 
and analysis of these values. Multiple-choice items will 
have greater similarity when a single distractor is much 
more likely than the others. Alternative item types (e.g., 
multi-select items, list ordering, etc.) will frequently 
have a larger number of possible responses. This is not 
an issue when looking at score similarity but should be 
considered when including exact incorrect matches in 
an analysis. Matching scores (0 or 1) are more likely than 
exact incorrect responses (A,B,C,D), so a higher level 
of score overlap is necessary to identify collusion from 
scores. Conversely, because exact incorrect responses 
are less likely than matching incorrect responses, their 
inclusion may increase the sensitivity of analyses. Because 
pretest items may vary between test takers, and because 
pretest items are generally less exposed than scored items, 
many operational collusion analyses include only scored 
items. This paper presents approaches for improving the 
efficiency of collusion analysis, determining criteria for 
flagging test taker pairs, as well as results of the application 
of these approaches.

3.  Matrix Multiplication
Matrix multiplication provides a highly efficient method 
for calculating all the counts necessary for collusion 
analyses. Table 1 provides a sample of the minimum data 
necessary to produce several matrices used for collusion 
analysis. In this data format there is one row per individual 
per item, so a 50-item test would have 50 rows of data for 
each test taker. A Registration ID is a unique identifier 
for a test taker and a specific sitting of a test, while a Test 
Taker ID is a unique identifier for a test taker that is used 
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across multiple tests. Because repeat test takers will show 
high levels of similarity when answering items they have 
previously seen, response similarity results should not flag 
high overlap between a test taker and their previous test 
across registrations (e.g., between R2 and R3 in the table, 
as these are both results from test taker “T2”). Highly 
dissimilar results for the same test taker could indicate a 
proxy test taker (Becker & Makransky, 2011). The Item 
ID is a unique identifier for a test item, while the Item 
Response is the option or response a test taker provided 
for the item. When working with alternative item types 
there can be a large number of different responses. Item 
Score is the point value given to the test taker response, 
although additional considerations not covered here are 
necessary for tests including polytomous items. Finally, 
the Item ID Response is a concatenation of the Item ID 
field and the Item Response field.

Data in Table 1 can be used to create the following 
four matrices:

1.	 Registration ID by Item ID, all data
2.	 Registration ID by Item ID, Item Score=1
3.	 Registration ID by Item ID, Item Score=0
4.	 Registration ID by Item ID Response, Item 

Score=0
Table 2 shows matrix 4 for a sample of data. This table 

is created by first selecting all rows where item score is 0. 
The table has one row for each unique registration ID, and 
one column for each unique item ID response. There are 3 
columns for each item – one for each incorrect response. 
A test taker would have a 0 in all three columns if they 
answered correctly, and a 1 in one of the columns if they 
answered incorrectly. Test taker R1 for example answered 
items 1, 2, and 50 incorrectly, with responses of C, A, and 
A. Test taker R2 answered items 1 and 50 correctly, and 
item 2 incorrectly with a response of B.

Numerous statistical analysis platforms including 
SAS, R, and S-Plus include matrix multiplication. For 
demonstration purposes, we use syntax from R (R Core 

Registration ID Test Taker 
ID

Item 
ID

Item 
Response

Item 
Score

Item ID 
Response

R1 T1 49 A 1 49_A

R1 T1 50 B 0 50_B

R2 T2 1 A 1 1_A

R2 T2 2 D 0 2_D

R3 T2 51 C 1 51_C

R3 T2 52 C 1 52_C

Table 1. Minimum data fields for collusion analysis matrices

Registration ID 1_B 1_C 1_D 2_A 2_B 2_D 50_A 50_C 50_D

R1 0 1 0 1 0 0 1 0 0

R2 0 0 0 0 1 0 0 0 0

R100 0 0 0 0 1 0 0 0 1

Table 2. Registration ID by item ID response sample table
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Team, 2020) to demonstrate the creation of matrixes and 
matrix multiplication. A data file including the fields 
above can be used to create matrices (in R this would 
use the syntax “table (Registration ID, Item ID)”), which 
transforms the data into a table with one row per test 
taker, one column per item or item response, and 0/1 in 
each cell. Using matrix multiplication to multiply the table 
by its transpose (in R syntax, it is “matrix%*%t (matrix)”) 
will quickly produce a new matrix with the desired counts 
for calculating different response similarity indices. 

Matrix 1 × Matrix 1T will produce a table containing 
the number of items in common between each pair of test 
takers (CommonItems), with the test length for each test 
taker in the diagonal. Matrix 2 × Matrix 2T will produce a 
table containing the number of correct items in common 
between each pair of test takers (CommonCorrect), with 
the diagonal (or row maximum) containing the score 
for the test taker in that row. Matrix 3 × Matrix 3T will 
produce a table analogous to Matrix 2 but for incorrect 
items in common between each pair of test takers 
(CommonIncorrect). Finally, Matrix 4 × Matrix 4T will 
produce the exact incorrect overlap between each pair 
of test takers (CommonExIncorrect). If desired, the table 
created from Matrix 3 minus the table created by Matrix 
4 will provide the incorrect but non-identical response 
count (CommonNExIncorrect). Similarly, summing the 
tables created from Matrix 2 and Matrix 4 will provide 
the total responses in common between each pair of 
test takers (CommonResp). Note that the dimensions of 
the resulting tables will not be identical if there are test 
takers with zero correct or all correct items in the data. 
For subsequent analyses we will be using the sum of 
CommonCorrect and CommonResp, which is the total 
responses in common or Response Similarity Index (RSI).

Using an Intel i7 quad core CPU (2901 Mhz), 
multiplying a 10,000 by 100 matrix took 6.4 seconds in R, 
while a 40,000 by 300 matrix took 510 seconds in R. The 
larger matrix in this case produced 1.6 billion pairs (or 
799 million unique pairs). This is the matrix size required 
to count exact incorrect overlap for 40,000 test takers 
on a 100-item test with 3 incorrect options per item. 
Anecdotally, performing these calculations through loops 
can take days to complete.
A Method for Interpreting Response Similarity
There are numerous methods for interpreting the 
significance of response overlap, including indices 

introduced by Angoff (1974), Holland (1996), Belov and 
Armstrong (2009), Maynes (2017), and others. It is beyond 
the scope of this paper to review and compare all of these, 
however, the approach we present for pre-calculating 
flagging values and simulating response distributions will 
be relevant to many different indices. 

Early research on answer copying (Bird, 1927; 1929) 
made use of test data to estimate the null distribution of 
response overlap. This approach is limited in terms of 
the availability of large samples of operational test data 
and may be affected by collusion/proxy test taking in the 
data. An alternative to empirical distributions is the use of 
simulated test data. To establish statistically defensible cut-
off values for an exam, a simulation process is presented 
that can be easily conducted by testing organizations to 
determine the desired flagging criteria for their exams. 

The basic idea is to specify the number of comparison 
pairs (N) for each unique raw score pair to support the 
desired RSI flagging results. For a 50-item exam, in total, 
there are 1,225 unique raw score pairs (exclude 0 and 
50), e.g., {1,1}, {1,2}, {1,3}, etc. Simulated data show for 
each score pair how frequently different levels of response 
overlap occur when there is no collusion. Operationally, 
the use of highly improbable levels of overlap (e.g., 
1/10,000), combined with the requirement that flagged 
test takers overlap with multiple other test takers, will 
result in a conservative security analysis standard that 
identifies colluding groups. 

In this example, item parameters are from a 50-item 
exam and calibrated under the Rasch model. All items are 
multiple-choice items with 4 options. This general process 
can be easily modified, but we expect flagging criteria to 
be robust to normal variation in item statistics. 

1.	 Use exam item parameters to compute raw-to-
theta score conversion table to determine theta 
scores for each raw score except for 0 and perfect 
score.

2.	 For each theta value, use IRT-b parameters to 
generate item scores (0/1) and compute the 
observed raw score.

3.	 If the observed raw score matches the true raw 
score, keep the simulated exam record, otherwise 
discard the data.

4.	 Repeat steps 2 and 3 until the total number of 
comparison pairs meets the specified sample size 
N.
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5.	 For all cases with simulated correct answers, code 
the correct response as “1” by convention; for 
incorrectly answered items, randomly code the 
incorrect response as either “2” or “3” or “4”. 

This processed results in uniformly distributed raw/
theta scores, with their associated simulated item score 

and item response vectors. These simulated data can 
then be used to calculate response similarity counts as 
detailed above. Probabilities for raw counts, or for indices 
computed from raw counts, can then be calculated from 
these data. For example, for raw score pair 30 and 31, if the 
number of comparison pairs is 10,000, and only one pair 
yields the highest total overlap value 34, the probability 
of observing this value would be 0.0001 (1/10,000). If an 
achievable overlap value (e.g. 35) is not seen across 10,000 
pairs, the probability of observing this value would be less 
than 0.0001. Table 3 shows an example for score pair {31, 
40}.

Relevant to the interpretation of this information is 
the maximum achievable overlap between responses 
given two scores. In the case of scores 31 and 40 there are 9 
responses that must be different (40 minuses 31) because 
these are items one test taker answered correctly and the 
other answered incorrectly. The maximum achievable 
overlap is therefore 41. The following logic is applied 
when comparing the maximum achievable overlap to the 
maximum observed value:

1.	 If maximum achievable overlap is equal to the 
maximum observed value and the proportion of 
pairs with this overlap value is less than or equal 
to the pre-determined flag probability threshold 
(e.g., 0.001), then the raw score pair is eligible 
to flag, and the total overlap flag is the highest 
observed value.

2.	 Maximum achievable overlap and maximum 
observed value are the same but the percentage 
for the highest observed value is higher than pre-
determined flag probability threshold (e.g., 0.001), 
this raw score pair is NOT eligible to flag.

3.	 The highest observed value is lower than the 
highest achievable value, this raw score pair is 
eligible to flag.

For score pair {31, 40} in Table 3, the highest observed 
value is 37 in the simulation. That is, among 10,000 
simulated pairs of comparison, one yielded this value 
(p=0.0001), so a value of 37 is eligible to flag based on a 
probability threshold <=.0001. For the score pair {49, 49}, 
the highest achievable overlap is 50, which is the same as 
the highest observed value. However, 144 out of 10,000 
pairs of comparison yield this value (p=0.014), so this 
score pair would not be flagged. We are still evaluating 
the best methods for setting conservative cuts when the 
highest observed values are higher than the probability 

Similarity Values N Proportion

21 4 0.0004

22 16 0.0016

23 74 0.0074

24 294 0.0294

25 701 0.0701

26 1228 0.1228

27 1699 0.1699

28 1823 0.1823

29 1681 0.1681

30 1155 0.1155

31 722 0.0722

32 359 0.0359

33 163 0.0163

34 57 0.0057

35 18 0.0018

36 5 0.0005

37 1 0.0001

38 0 0

39 0 0

40 0 0

41 0 0

Total 10,000 1

Table 3. Total exact overlap distribution example for 
score pair: 31, 40
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threshold but lower than the highest achievable values, 
as well as the resilience of this method to reasonable 
variability in the distribution of item statistics.

4. � Applying the Method to 
Simulated Collusion

Data with collusion were simulated using the approach 
described in Maynes (2017). An initial set of 4,000 theta 
values were calculated from live test data response strings, 
and these were used to generate 1 million pairs of theta 

values. Nine sets of 1 million response pairs were then 
generated, ranging from completely independent (0% 
copying) to 80% similar (40 out of 50 responses taken from 
the same base response string) responses. The raw scores 
and overlap for each response string were then calculated 
for each pair, and the pairs were then flagged based on 
various probability values ranging from .01 to .000001 
using the M4 similarity index (Zopluoglu, 2019) and the 
simulated null distribution. The M4 similarity statistic 
calculates the probability of a given number of correct 
and incorrect matching responses based on a generating 
function and estimated probabilities of matching correct, 

Probability 
Threshold

M4 Simulated Null Distribution

Number of 
Detections Observed Rate Number of 

Detections
Observed 
Rate

0.01 2715 0.002715 491 0.000491

0.001 180 0.00018 64 0.000064

0.0001 13 0.000013 5 0.000005

0.00001 2 0.000002 1 0.000001

0.000001 0 0 1 0.000001

Copying %
M4 Simulated Null Distribution

0.01 0.001 0.0001 0.00001 0.000001 0.01 0.001 0.0001 0.00001 0.000001

10 0.014 0.001 0 0 0 0.008 0.002 0 0 0

20 0.056 0.009 0.001 0 0 0.054 0.018 0.005 0.001 0

30 0.159 0.036 0.007 0.001 0 0.206 0.096 0.034 0.014 0.005

40 0.352 0.114 0.031 0.008 0.001 0.481 0.297 0.146 0.075 0.036

50 0.601 0.277 0.1 0.035 0.007 0.738 0.576 0.375 0.247 0.147

60 0.831 0.538 0.266 0.114 0.034 0.9 0.807 0.65 0.513 0.381

70 0.951 0.801 0.547 0.309 0.127 0.969 0.928 0.852 0.753 0.664

80 0.989 0.947 0.83 0.627 0.379 0.992 0.978 0.957 0.912 0.872

Table 4. Type 1 error for M4 and simulated null distribution

Table 5. Power for M4 and simulated null distribution by copying rate
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matching incorrect, and unmatched incorrect responses. 
Table 4 shows the Type 1 error rates, which are the number 
of independent pairs flagged (out of 1 million pairs) for 
0% copying. Table 5 shows the power across probability 
and percent of copied responses. It should be noted that 
not all response pairs are eligible for flagging because 
the scores are too high. Both M4 and simulation-based 
criteria have low false positive rates when an appropriate 
probability threshold is used, although power is limited 
with low levels of copying.

5. � Discussion
The validity of test results depends on numerous factors, 
one of which is the integrity of the testing situation. 
Online proctoring offers increased access for testing, but 
also provides new opportunities for collusion and proxy 
test taking. Incorporating ongoing analysis of response 
overlap into the testing process can help to improve the 
integrity of existing test results, as well as discourage 
future misconduct. The efficiencies provided by matrix-
based calculations can drastically reduce the time required 
to perform these analyses, facilitating their use in both 
operational and research settings. We have compared two 
approaches for identifying answer copying, however the 
approach to calculating response similarity counts can be 
used with numerous metrics. We encourage researchers 
to take advantage of the efficiency of calculating overlap to 
thoroughly compare existing and new collusion indices.

Both the M4 and null distribution simulation 
presented here make use of test item statistics. Future 
research will look at the consistency of flagging criteria 
when different distributions of item statistics are used 
and when incorrect options are more or less common. 
The simulation method described here should be largely 
independent of test difficulty and population distribution. 
If we find that flagging criteria are consistent across a 
wide range of item characteristics it will make it easier 
to implement those criteria widely. A single set of tables 
showing the overlap required to flag candidate pairs given 
test length (items in common) and score would allow 
for consistent and widespread application of collusion 
analysis.

Test security is rarely about identifying a single 
individual or pair of test takers, but rather to find and 
plug holes in test security more broadly. When groups of 

test takers have access to test content, results of collusion 
analysis show not just high overlapping pairs but highly 
overlapping groups. A single pair of results with 1 in-a-
million overlap is suspicious, while a group of 73 is clearly 
actionable (Romo & Bowman, 2020). Whether online 
testing involves live remote proctors, review of recorded 
test sessions, or un-proctored testing using an honor 
code (as with the West Point cheating scandal), collusion 
analysis can detect and deter cheating. Proxy test takers 
may show different patterns of overlap than copiers and 
compiling and publishing results from verified incidents 
will help the testing community better understand what to 
look for. In situations where numerous test takers all have 
the same exceptionally high overlap organizations will be 
justified in invalidating test results. The inclusion of other 
forensic flags such as those covered in Cizek and Wollack 
(2017) and other data forensic work, as well as internal 
investigations and interviews, are also appropriate. 
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